研究方向
Based on the genomics, transcriptomics and metabolomics data produced by the lab and the public data platforms as well as the long- and short-read sequencing data, we aim to develop algorithms to identify the genetic risk genes and variants of brain diseases in Chinese population, explore the new pathogenesis of brain diseases based on multi-omics data, develop algorithm for molecular diagnosis, and study new diagnosis and treatment methods using big data.
Based on brain fMRI data, genomics data, electronic medical records, behavior data, environmental factors and other data types produced by the lab and global public databases, we will develop integrative methods based on imaging, molecule and behavior data using machine learning and deep learning models, identify the risk factors of brain diseases, and aim to provide intelligent diagnosis for brain diseases.
Based on the microbiome data, metabolomics data and MRI data produced by the lab and public data platforms, we carry out studies on the data analysis and algorithm development of metagenomics data by integrating long- and short-read sequencing data, microbial species identification and gene function analysis, virus-bacteria interaction prediction, association analysis between microbiome data and imaging, behavior and genomics data.
© Copyright 复旦大学生物医学人工智能实验室 版权所有